19 research outputs found

    Classical many-body time crystals

    Full text link
    Discrete time crystals are a many-body state of matter where the extensive system's dynamics are slower than the forces acting on it. Nowadays, there is a growing debate regarding the specific properties required to demonstrate such a many-body state, alongside several experimental realizations. In this work, we provide a simple and pedagogical framework by which to obtain many-body time crystals using parametrically coupled resonators. In our analysis, we use classical period-doubling bifurcation theory and present a clear distinction between single-mode time-translation symmetry breaking and a situation where an extensive number of degrees of freedom undergo the transition. We experimentally demonstrate this paradigm using coupled mechanical oscillators, thus providing a clear route for time crystals realizations in real materials.Comment: 23 pages, 5 figures, comments are welcom

    The role of fluctuations in quantum and classical time crystals

    Full text link
    Discrete time crystals (DTCs) are a many-body state of matter whose dynamics are slower than the forces acting on it. The same is true for classical systems with period-doubling bifurcations. Hence, the question naturally arises what differentiates classical from quantum DTCs. Here, we analyze a variant of the Bose-Hubbard model, which describes a plethora of physical phenomena and has both a classical and a quantum time-crystalline limit. We study the role of fluctuations on the stability of the system and find no distinction between quantum and classical DTCs. This allows us to probe the fluctuations in an experiment using two strongly coupled parametric resonators subject to classical noise.Comment: 11 pages, 5 figure

    Ghost in the Ising machine

    Full text link
    Coupled nonlinear systems have promise for parallel computing architectures. En route to realizing complex networks for Ising machines, we report an experimental and theoretical study of two coupled parametric resonators (parametrons). The coupling severely impacts the bifurcation topology and the number of available solutions of the system; in part of the stability diagram, we can access fewer solutions than expected. When applying noise to probe the stability of the states, we find that the switching rates and the phase-space trajectories of the system depend on the detuning in surprising ways. We present a theoretical framework that heralds the existence of 'ghost bifurcations'. These bifurcations involve only unstable solutions and lead to avoided zones in phase space. The emergence of such ghost bifurcations is an important feature of parametron networks that can influence their application for parallel logic operations

    Rapid flipping of parametric phase states

    Full text link
    Since the invention of the solid-state transistor, the overwhelming majority of computers followed the von Neumann architecture that strictly separates logic operations and memory. Today, there is a revived interest in alternative computation models accompanied by the necessity to develop corresponding hardware architectures. The Ising machine, for example, is a variant of the celebrated Hopfield network based on the Ising model. It can be realized with artifcial spins such as the `parametron' that arises in driven nonlinear resonators. The parametron encodes binary information in the phase state of its oscillation. It enables, in principle, logic operations without energy transfer and the corresponding speed limitations. In this work, we experimentally demonstrate flipping of parametron phase states on a timescale of an oscillation period, much faster than the ringdown time \tau that is often (erroneously) deemed a fundamental limit for resonator operations. Our work establishes a new paradigm for resonator-based logic architectures.Comment: 6 pages, 3 figure

    Deterministic and stochastic sampling of two coupled Kerr parametric oscillators

    Full text link
    The vision of building computational hardware for problem optimization has spurred large efforts in the physics community. In particular, networks of Kerr Parametric Oscillators (KPOs) are envisioned as simulators for finding the ground states of Ising Hamiltonians. It was shown, however, that KPO networks can feature large numbers of unexpected solutions that are difficult to sample with the existing deterministic (i.e., adiabatic) protocols. In this work, we experimentally realize a system of two coupled KPOs and find good agreement with the predicted mapping to Ising states. We then introduce a protocol based on stochastic sampling of the system and show how the resulting probability distribution can be used to identify the ground state of the corresponding Ising Hamiltonian. This method is akin to a Monte-Carlo sampling of multiple out-of-equilibrium stationary states and is less prone to become trapped in local minima than deterministic protocols

    On the effect of linear feedback and parametric pumping on a resonators frequency stability

    Full text link
    Resonant sensors based on Micro- and Nano-Electro Mechanical Systems (M/NEMS) are ubiquitous in many sensing applications due to their outstanding performance capabilities, which are directly proportional to the quality factor (Q) of the devices. We address here a recurrent question in the field: do dynamical techniques that modify the effective Q (namely parametric pumping and direct drive velocity feedback) affect the performance of said sensors? We develop analytical models of both cases, while remaining in the linear regime, and introduce noise in the system from two separate sources: thermomechanical and amplifier (read-out) noise. We observe that parametric pumping enhances the quality factor in the amplitude response, but worsens it in the phase response on the resonator. In the case of feedback, we find that Q is enhanced in both cases. Then, we establish a solution for the noisy problem with direct drive and parametric pumping simultaneously. We also find that, in the case when thermomechanical noise dominates, no benefit can be obtained from neither artificial Q-enhancement technique. However, in the case when amplifier noise dominates, we surprisingly observe that a significant advantage can only be achieved using parametric pumping in the squeezing region

    The role of fluctuations in quantum and classical time crystals

    No full text
    Discrete time crystals (DTCs) are a many-body state of matter whose dynamics are slower than the forces acting on it. The same is true for classical systems with period-doubling bifurcations. Hence, the question naturally arises what differentiates classical from quantum DTCs. Here, we analyze a variant of the Bose-Hubbard model, which describes a plethora of physical phenomena and has both a classical and a quantum time-crystalline limit. Fluctuations enter the system due to the intrinsic quantum uncertainty and/or due to finite coupling to an environment. These fluctuations can activate transitions between the system's various stationary solutions. We study the role of fluctuations on the stability of the system in the long-time limit and find no distinction between quantum and classical DTCs. This allows us to probe the fluctuations in an experiment using two strongly coupled parametric resonators subject to classical noise

    HarmonicBalance.jl : A Julia suite for nonlinear dynamics using harmonic balance

    No full text
    HarmonicBalance.jl is a publicly available Julia package designed to simplify and solve systems of periodic time-dependent nonlinear ordinary differential equations. Time dependence of the system parameters is treated with the harmonic balance method, which approximates the system's behaviour as a set of harmonic terms with slowly-varying amplitudes. Under this approximation, the set of all possible steady-state responses follows from the solution of a polynomial system. In HarmonicBalance.jl, we combine harmonic balance with contemporary implementations of symbolic algebra and the homotopy continuation method to numerically determine all steady-state solutions and their associated fluctuation dynamics. For the exploration of involved steady-state topologies, we provide a simple graphical user interface, allowing for arbitrary solution observables and phase diagrams. HarmonicBalance.jl is a free software available at https://github.com/NonlinearOscillations/HarmonicBalance.jl.publishe
    corecore